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ABSTRACT 

We provide two new proofs of the identity 

~(3n + l / x  ~ = K = ~ - ~  
n=0 n : l  

where ~(n) = dl(n) - d2(n) and di(n) is the number  of divisors of n 

congruent  to i rood 3. Fur thermore,  we express the number  of solutions 

of the Diophantine equation x 2 + 3y 2 = N in te rms of 5(N). 

1. I n t r o d u c t i o n  

The theory of theta functions with characteristics 

NGZ a 

defined for ~ E C g, v a symmetric g • g matrix with positive definite imaginary 

part and e, e ~ vectors in R g, plays a central role in the theory of abelian varieties, 

compact Riemann surfaces and, when g = 1, combinatorial number theory. 

As a function of ~ with 7 fixed, they are the bulding blocks of the theory 

of multiply periodic functions and, as a function of ~- (usually with ~ = 0), 

the building blocks of the theory of modular forms. The modular theory (7- 

theory), especially when g > 1, is deeply elegant and useful and is much more 

difficult than the i-theory. Many combinatorial number theoretic properties 

can be deduced from identities whose proofs are very simple after appealing to 
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the theory of modular forms. Sometimes, these proofs do not give any insight 

into the question but  sometimes they do. Since the ~-theory is much more 

elementary, it seems reasonable to ask whether the theory of modular forms is 

really necessary in a particular problem or can one get the result from ~-theory. 

In the book [FK], these theories are exposed in an a t tempt  to show that  there 

is a general theory which handles questions in combinatorial number theory. 

The reader is advised to consult this book and the literature references cited 

there. In IF1] it was shown that  by defining 

~(n) = dl (n) - d2 (n) 

where d~(n) is the number of divisors of n congruent to i mod3,  one gets a 

relation between the multiplicative function 5(n) and the function a(n) ,  where 

a(n) is the sum of the divisors of n. As a consequence the identity 

Z a(3n + 2)x n = 3 5(3n + 1)z n 
n : - O  

is proven. 

In this paper we give new proofs of the result 

oo ~ [  (1 - x3n) 3 
E S ( 3 n + l ) x n =  " "  ( i - - ' - ' ~  " 
n = O  n----1 

One of our proofs will use an identity which requires the modular theory. We 

present this identity because we feel it is natural and pretty. The second proof 

we offer uses neither this identity nor any modular considerations. We think this 

is worth showing in its own right, but more importantly it shows how techniques 

of Godin can be used to solve problems of this sort as well as the solution to 

the Diophantine equation given at the end of the paper. 

Eta-products and eta-quotients 7]N(NT)/?~(T) have been considered by many 

authors. See [DKK] and [M], for example, and [BB] or [S] for other proofs of 

this identity. 

We consider in detail the case N = 3. In the variable x = exp(2zrir) we have 

o~ (1 - x3~)  3 
- x l /3  I X  - g ( x )  

n~l 

In order to have a better  picture of this function we begin by changing variables 

and let x = y3, so that  in the variable y we have 

~3(3T) oo (1 -- ygn)3 oo 
- -  t t 3 n + l Y  �9 7 ] ( T ) - - Y  I I  ] _ ~ y ' ~  -- Z -  ~3n-bl 

n=l n----0 
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It thus follows that  
~ (1 -- x3n) 3 ~ xn 

. . . . . .  g3n+l  �9 1 - x n 
n--1 n--0 

If one computes g3n+l for the first few values of n we see that  

gl  : 1, g4 ---- 1, g7 : 2, gl0 : 0, gl3 : 2, gl6 ---- 1, . . .  

so that  one begins to suspect that  g3n+l ---- 5(3n + 1). 

2. A related function 

In order to get a grip on the coefficients we are seeking, we define in this section 

a new function 1-[~__1 (1 - x n ) 3 / ( 1  - x 3n) (see Table I in [M]). Let us denote 

this function by f ( x ) .  In this section we compute the power series coefficients 

of f ( x )  and write 
oo 

f ( x )  = 1 - 3 E f n x n .  
n=l  

LEMMA l: I [ m >  0 is an integer, then f3m+l = g3m+l and f3m = -2~(m) .  

Proof'. We begin by recalling Jacobi's identity 

I I  (1 - -  xn) 3 = ~--~(-1)k(2k + ]~_,x ~2+~ o 

n=l  k=0 

It is clear from the identity that  

t \ n2~-n 

f(x) = + 1 i x  2 
1 x 3n) 1 - I n = l (  - 

By summing on congruence classes mod 3, the numerator of the above fraction 

is easily seen to be equal to 

oo oo 

E ( - - 1 ) n ( 6 n  -4- 1)x 2 + E ( - 1 ) n + l ( 6 n  -4- 3 )x  9n2+gn+2 

n=0 n=0 

E (  9n2+lbn+6 + -1 )n (6 n  + 5)x 2 , 
n : 0  

which we shall rewrite as 
oo oo 

n2-I-n 3 3n2@n 
- 3 x  E ( - 1 ) n ( 2 n  + 1)x 9- -z-  + ~--~,(-1)~(6n + 1)x 

n ~ 0  n~0  
oo 

9n2+lSn+6 
4- E ( - - 1 ) n ( 6 n  -~- 5)x 2 . 

n : 0  
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The last sum can be rewritten as 

oo 
E (  9n2 "[- 15n q'6 - 1 ) n ( 6 n  + 5)x 2 
n z 0  

oo 
9n 2 --3n 

----- E ( - - 1 ) n - i ( 6 n  -- 1)X 2 
n z l  

--(x) 
E 9n 2_[_3n 

= ( - 1 ) ~ ( 6 ~ + 1 ) x  : , 

hence the expression for f ( x )  now becomes 

(1 - x9n) 3 
:(x) = -3x I I  i - - ~  + 

n : l  

E~ _~(-1)"(6n + 1)xS3"~ +" 
I-L~176 (1 - x 3n) 

Now we use the following formula, which was proved in IF1]: 

- 27ii + 6(n)y  n . 

n - :  l 

Expanding the numerator  of the left-hand side in series and using the Jacobi 

triple product  formula for the denominator,  we get 

O0 3n 2 +n 
~ n = _ o o ( - 1 ) n ( 6 n  + 1)y v c~ 

= 1 + 6 ~ ~ (n )y  n 
1 I ' I n = l (  - -  y n )  n----1 

After replacing y by y9 = x 3 in the last equality, we finally obtain 

oo oo 

f ( x )  : - o  ' )  / z  ~ Y3n+l  ~ -  _3nq-1 -~- 1 q- 6 E (~(n)x3n"  

n----0 n=-i 

It  is obvious from this last representation tha t  we may write 

oo 

f ( x ) = l - 3 E f n x  n 
n----1 

in the form we suggested at the beginning of the section. This concludes the 

proof of the lemma. | 
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3. Re lat ionships  to the  a - funct ion  

In this section we shall give the modular  proof of the assertion tha t  5(3n + 1) -- 

g3~+1. In IF2], the following identity is proven: 

~ (1 - xgn)3(1 - xn) 3 
x ----Tn? 

n = l  

oo 

= E a(3n + 1)x s~+l - a(3n + 2)x 3n+2. 
n~-0 

The left-hand side of this identity is nothing else but 

oo o o  n g(x3)f(x) : (En=og3n-i-lX3nT1) (l--3En=lfnX ). 

If we define g3n = 0, g3n+2 = O, A3n = 0, A3n+l -- a(3n + 1), A3n+2 -- 

-a(3n  + 2), we have 

gnX n 1 -- 3 f~x ~ = A~x n 
- -  n = l  n----O 

and clearly 
n- -1  

An = -3  E gkfn-k + g~. 
k----0 

Since we know A~, we have some interesting equations relating fm and gm. 

Consider first the case where n is congruent to 0 mod 3. The equation for An 

yields 
n- -1  

0 = ~ gk/~-k. 
k----0 

Since g vanishes when k is congruent to either 0 or 2 rood3, the sum runs only 

over those k which are congruent to i mod 3. In this case, however, since n is 

congruent to 0 mod 3, n - k is congruent to 2 mod 3 and thus f~-k = 0. Hence 

there is no information in this case. 

Consider now the case n congruent to 2 mod 3. The equation for An now 

yields 
n - 1  

-a(n) = -3  Z gkfn- . 
k----O 

The sum still only runs over those k congruent to 1 mod 3 and we get 

l=j 

a(3j + 2) = 3 E gsl+lfs(y-l)+l- 
l=O 
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However, we already know that  ]3( j - - l )+l  = g3(j--l)+l SO we can write the identity 

THEOREM 1: 

t=j 

o'(3j + 2) = 3 E g3t+lg3(j-O+l. 
1----0 

3Y2 I I  (1 - y9n)6 o0 2)Y 3k+2. ~=1 (1 y3n)2 - ~ ~(3k + 
k=0 

Proof'. The formula preceding the statement of the theorem without the 3 is 

precisely the expression for the coefficients of the power series of the function 

g2(y3)= ~ i : F  

and this is the theorem. | 

THEOREM 2: For every n E Z+, g3n+l -- 5(3n + 1). 

Proof'. The identity of Theorem 2 can, of course, be rewritten as 

3 =1 f : : 7  / - -k=o  ~(3k + 2)x  k . 

In [F1] it was shown that  the right-hand side is equal to 3(~n~__0(f(3n + 1)xn) 2 

and therefore 

II(~ (1_1_ ~-- X - ' - ~ -  x3n) 3 __ En~__15(3 n + 1)xn  

n : l  

which, by the very definition of g3n+l, proves the theorem. | 

Let us now combine the identity at the beginning of this section with Theorem 

2: 

3x 2 (1 - xgn) 6 (1 - x9n)3(1 - xn) 3 -- E a(3k + 1)x 3k+1 . 
n----i (1 x3n) 2 § x -(i---~-~n ~ 

n--1 k--=0 

After factoring out 

fi( 1 - x g n )  3 
x - 1 - - - - ~  - g ( x 3 ) '  

n=l  

we obtain from our representation of f ( x )  that  

gz~+lX an+l 1 + 6 5(n)x 3n = a(3k + 1)x 3k+1. 

\ n=O ~ n=l  k=0 
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More compactly, we have 

E ( a ( 3 n  + 1) - g3n+l)X 3n+i = 6 g3n+I)X 3n+l 5 ( n ) X  3 n  �9 

n = 0  \ n ~ 0  ~ - -  

The formula for the coefficients now yields the same result we would have 

obtained from the expression for An when n is congruent to 1 rood 3: 

d 3 n + l  --  a(3n + 1) = 6(3n + 1) + 6~-"n--1(~(3j + 1)(~(n - j ) .  

4. A n  a l t e r n a t i v e  p r o o f  

In view of our remarks on proofs which use modular i ty  and those which do 

not, we give in this section a non-modular  proof. The reader should not infer 

from this tha t  we prefer non-modular  proofs but  ra ther  tha t  we are interested 

in knowing that  one exists when it does. Moreover, we shall see tha t  the added 

effort in this case is worthwhile, since the computat ions also provide a solution 

to a problem of quite a different sort at the end of the paper.  The following 

formula for the product  of three the ta  functions has been derived without any 

modular  considerations ([G]): 

0 ~ 2 

E 0 2 (0, 2T)O (0, 3T)O , , , (0, 6~-). 
o<_.<_1 e'~ + e'~ 4 - e'~ + 4 [ ~1 - ~2 - 2~3 
O<t~<2 

�89 �89 �89 ' ' ' 1, we obtain If  we substi tute h e r e e l = -  ,e2 = ,e3 = -  , e l  = %  = e  3 = 

after some routine theta-algebra 

The left-hand side is 

~ ( i  - yn)3 
n = l  (1  - -y - - - '~ )  - -  f ( y )  = 1 -- 3 E fnyn" 

n = l  
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The power series version of the right-hand side of this identity is 

~-~ y3 (n2+n) (  ~'~. y 9m2+9m+3 -- ~ y 9m2+3m+l)  

n=-oo m=-oo m=-oo 

~ ( ~  ~ ) q'- E y3n2 y9m2- -  y9m2+6m+l " 

n=--oo m=--cx) m=--oo 

We conclude that 

Isr. J. Math. 

Hence 

o [lo] ,o ~,o [1o] ~o o~, +o [Oo] ,o ~,o [Oo I ~o~, 

i.e., 

E ~  cx~ 3(3N~-1) 1 - 3 ~3Ny 3N = 2 ( 3 ~ N = o I 3 ~ + 1 ~  ) + 1 - 3 Z ~ = l f 3 N y ~ .  
~___1 ~ 

3 x - ' ~  ~ ~ 3 N + I  
/__...dN_~O J3N+ly  

(:xD oo oo oo 

n--=-oo m-----oo n---=-oo m-----oo 

=o[lo] ,o ~,,o [~] ~o o~, +o [~] ~o ~,,o [~] (oo~, 
3N 

1 - 3EN=lf3Ny 
O0 O0 O0 O 0  

n=--o0 m=--oo n=--oo m=- -~  

o [:] ~o ~,o [~] (o o,, +o [Oo] r ~,o [Oo] ~oo~, 
SECOND PROOF OF THEOREM 2. By summing on congruence classes modulo 
3 in the definition of theta-functions, we get the following identities (see [FK], 

p. 76): 

[10] [~] [10] 8 (0, 2r) = 20 (0, 18T) + 8 (0,187), 

[~] [~1 [~ 0 (0, 2T) = 20 (0, 18r) + 0 (0, 18T). 
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By equating the coefficients of y3(UN+l) on  both sides we get 

f3(3N+l)  : - - 2 f 3 N + l .  

We know, however, that f3N+l = g3N+l and fn(3N+1) = -2~(3N+ 1). Therefore 
g3N+l : 6(3N + 1), which is precisely Theorem 2. 1 

5. 5(N) and the partition function 

In this section we derive a formula for the function 5(n) in terms of the classical 
partition function P(n). 

THEOREM 3: For all N E Z+ we have 

3k2+k <N 

(1) E ( -1)kkp(  N 
kCZ 

(2) 

3k 2 + 
k)  ~ = 5(N), 

2 / 

3k224-k _<3N+l 

E (-1)kkP(  3N + 1 
kCZ 

3 k22+k _<N 
E (-1)k(2k + 1 )P (N  - k2 +k'~ = - 

k=O 
3k2§ ~- _~N-1 { 

(3) E (--1)kS(N 3k2 + k 0 
kCZ 2 ) = (--1)ram 

Proof: The formula 

cx~ n 1)y 3,,~+,, oo E~=_~(-1) (6n + 
1-In~__l (1 _yn) 

if N ~ 3m2+m 
2 

if N - 3m2+m 
2 

= 1 + 6 E 5(n)Yn 
n = l  

yields 

Euler's identity 

(~3 (X3 

E P(rt)yn E (-1)ny3"~+~ = 1, 
' / I ,=0  ' i I .= - -0 ,0  

i i ( l _ x n )  = x %  §176 

and the definition of the partition function yield 

oo oo oo 

E ( -1 )n (6n+  1 ) y ~  E P(n)Yn= 1 + 6  E(~ (n )y  n. 
n------oo n=0 n = l  



262 H.M. FARKAS AND Y. GODIN Isr. J. Math. 

so that  we have 

n - - - - - - o o  : n : l  

: ~ ~(~)y~. 

We now equate the coefficients of yN on both sides and get 

3k2~-k < N  
2 

k C Z  

3k 2 + 
k)  ~ = 5(N), 

2 ] 

which is (1). 

Identity (2) follows immediately by combining (1) with the formula of g3n+l = 
5(3n + 1) in the introduction. 

The proof of (3) follows from the identity 

o o  ~ o o  
?~ 3 n 2 t  n -  

-(-1) ny ~ = ~ ,~ (n )y  '~ ~ ( -1 )n~"~  -+~ 

6. The Diophantine equation x 2 + 3y 2 = N 

The question of the number of solutions to the equation x 2 + y2 : N is a 

classical one, and the quantitative solution was given by Jacobi who proved 

that  the number of solutions was given by 4A(N),  where A(N) is the non- 

negative integer (dl (N) - d 3  (N)) where di (N) represents the number of divisors 

of N congruent to i mod 4. In this setting a solution is given by a vector (m, n) 

and different vectors correspond to different solutions. Hence the number of 

solutions to x 2 + y2 = 1 is 4 and the solutions are (1,0), ( -1 ,0 ) ,  (0, 1), ( 0 -  1). 

In this section we consider a similar problem. We are interested in the number 

of solutions to the equation x 2 + 3y 2 = N and will show that  if 5(N) is defined 

by d l (N)  - d2(N), then the number of solutions is given by 26(N) when N is 

odd and 66(N) when N is even. This is, of course, not a new result, but since 

it follows from the techniques used here we present it. 

LEMMA 2: The following identity holds true: 

=o [Ool,O,O ,. 
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Proo~ Let us recall the identity immediately preceding the second proof of 
Theorem 2 in Section 4: 

oo 3N 
1 - 3EN=l f3NY  

":-- y 3 ( n 2 + n )  y9m~+9m+3"~- E y3n2 E y9m2 
n=-oo m=-oo n=-oo m=-oo 

=~[1o] ~o,~,o[lo] ~o,o~,~o[Ool ~o,~,o[Oo],O,O~,. 
However, we know from Section 2 that f3N = -2~(N) and that 

, 

8 
- 27ri 

n = l  

Combining these three results proves the lemma. | 

In order to proceed we are going to need two further identities: First, the 
modular equation for k = 3 (cf. Prop. III.5 in [G] for a proof that doesn't use 
modularity): 

8[00] (0, r ) 8 [ ~ ] ( 0 , 3 T ) = 8 [ ~ ]  (0, T)8[01](0 ,3T)+8[~](0 ,  T)8[~] (0,3T). 

The second identity we need follows readily from the elementary formulae 
([FK], p. 77) 

8 [00] (0,7)=8 [00] (0,4T)+8 [10] (0,4T), 

8101] (0, T ) = 8  [00] (0,4T)--8 [10] (0,4T). 

We write these formulae once more with 3T substituted for T, and multiply 
to get 

= 2  (0E~ ] ,0 4T,~ [~] ,012~, ~ ~ [~] ,0 4~,0 [~] ,012~,) 
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LEMMA 3: 

:~ (o [Oo] ,o 4~,o [~] ~o 1~, +o [~] ~o ~,o [~] ,o 1~,) 

+~[Oo] (o~,o [Oo],O~,+o[lo] (o~,o[lo] (o~, 
Proof'. 

~[Oo](O ~,~[Oo],O ~, 
=~[Oo],O~,~[Oo],O~, ~[~o] ~o~)~[lo],O~, 

+o[Oo],O~,o [~] ~o~,+o[lo],O~,O[lo],O~, 
__o [Oo] ~o, ~,o [Oo] ,o,~, +o [Ol] ,o,~,o [o1] ~o,~, 

+o [~ ,o, ~,o [oo] ,o,~, + o [~] ,o, ~,o [1o I ,o, ~, 
:~ (0 [00] ~0 4~,0 [00] ~0 1~, +0 [:1,0 4~,0 [~0] ,0 1~,,) 

+0[00] r r (0~,0110] ~0~,, 
(The second equality is the modular equation and the last equality is the identity 

immediately preceding the statement of the Lemma.) | 

We now replace T by 2T in Lemma 2 and substitute Lemma 1 twice (once as 

is and once with 4"/- instead of 7): 

THEOREM 4: We have the following identity valid for all points T in the upper 

half plane: 

[~] [~] 0' (0, 3T) 0' (0, 12T) 
+ 2  

The power series version of Theorem 6 immediately yields 
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COROLLARY 1: The number of  integer solutions to the equation 

x 2 + 3y 2 = N 

is 25(N) when N is odd and 65(N) when N is even. 

It is perhaps interesting to note that  the result of Corollary 1 is equivalent 

to the following identity, which apparently goes back to Dirichlet as does the 

result of Corollary 1 (cf. [H], sect. 12.4): 

E t m2+mn+n2 = 1 + 6 E 5(n)t". 
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